深度学习资料推荐

深度学习资料推荐

1. 视频课程

Yaser Abu-Mostafa

加州理工的Yaser Abu-Mostafa教授出品的机器学习网络课程,非常系统地讲解了机器学习背后的原理,以及主要的技术。讲解非常深入浅出,让你不光理解机器学习有哪些技术,还能理解它们背后的思想,为什么要提出这项技术,机器学习的一些通用性问题的解决方法(比如用正则化方法解决过拟合)。强烈推荐。

Geoffrey Hinton

深度学习最重要的研究者。也是他和另外几个人(Yann LeCun,Yoshua Bengio等)在神经网络被人工智能业界打入冷宫,进入低谷期的时候仍然不放弃研究,最终取得突破,才有了现在的深度学习热潮。他在Coursera上有一门深度学习的课程,其权威性自不待言,但是课程制作的质量以及易于理解的程度,实际上比不上前面Yaser Mostafa的。当然,因为其实力,课程的干货还是非常多的。

UdaCity

Google工程师出品的一个偏重实践的深度学习课程。讲解非常简明扼要,并且注重和实践相结合。推荐。

小象学院

国内小象学院出品的一个深度学习课程,理论与实践并重。由纽约城市大学的博士李伟主讲,优点是包含了很多业内最新的主流技术的讲解。值得一看。

2. 书

《Deep Learning the Book》

这本书是前面提到的大牛Yoshua Begio的博士生Goodfellow写的。Goodfellow是生成式对抗网络的提出者,生成式对抗网络被Yann LeCun认为是近年最激动人心的深度学习技术想法。这本书比较系统,专业,偏重理论,兼顾实践。是系统学习深度学习不可多得的好教材。

3.推荐路径

不同的人有不同的需求,有些人希望掌握好理论基础,然后进行实践,有些人希望能够快速上手,马上做点东西,有些人希望理论与实践兼顾。下面推荐几条学习路径,照顾到不同的需求。大家可以根据自己的特点进行选择。

Hard way

Yaser -> Geoffrey Hinton -> UdaCity -> 小象学院 -> Good Fellow
特点:理论扎实,步步为营。最完整的学习路径,也是最“难”的。
推荐指数 4星

Good way

Yaser -> UdaCity -> 小象学院 -> Good Fellow
特点:理论扎实,紧跟潮流,兼顾实战,最后系统梳理。比较平衡的学习路径。
推荐指数 5星

“Fast” way

UdaCity -> Good Fellow
特点:快速上手,然后完善理论。
推荐指数 4星

“码农” way

UdaCity
特点:快速上手,注重实践。
推荐指数 3星

以上路径按照从完整到精简的顺序排列。如果要我只推荐一条路径的话,那么就是2 Good way(Yaser -> UdaCity -> 小象学院 -> Good Fellow),完整同时又兼顾效率,理论与实践并进的学习路径。强烈推荐。

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器